

VSML2512S6 Series, Current Sensor Resistor (Lead / Halogen Free)

The history of revision change for the specification

Date	Revision	Changes	
2021/11/24	A0	New Approval standard (POYIN)	
2021/12/7	A1	Revise schematic diagram of P.1 & P.2 (YITING)	
2022/3/8	A2	Add resistance 0.75 (POYIN)	
2022/4/18	A3	Add marking (YT)	
2022/7/11	A4	Add 2 description of care note for storage in care note page (CH)	
2022/10/27	A5	Add Marking Direction and schematic diagram and revise Care note description(CHW)	
2023/2/23	A6	Remove ESD test item(CH)	

VSML2512S6 Series, Current Sensor Resistor (Lead / Halogen Free)

Features / Applications:

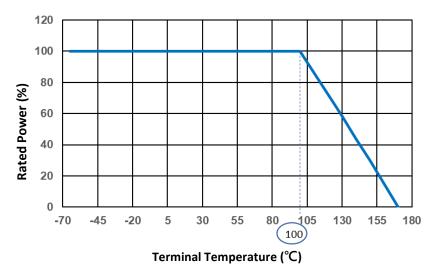
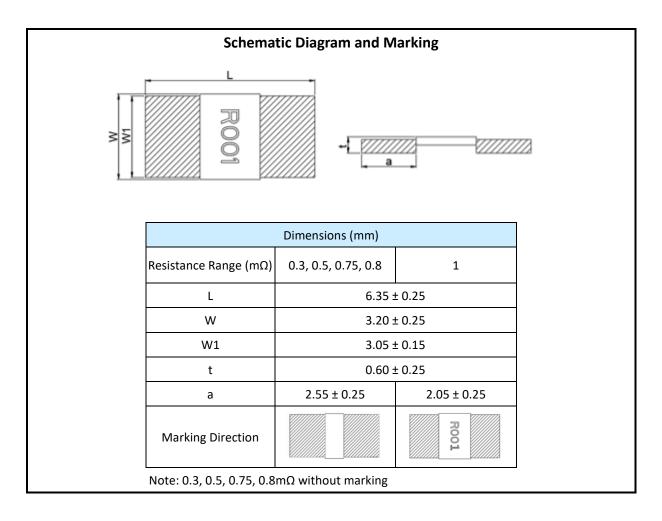
- High power rating is up to 6W
- Welding construction; excellent long-term stability
- Automotive applications
- RoHS compliant and AEC-Q200 qualified

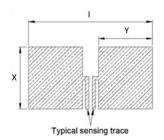
Electrical Specifications:

Characteristics ¹	Feature		
Power Rating ²	6 W		
Resistance Value	0.3 to 1 m Ω		
Temperature Coefficient of Resistance (25/125 °C)	From 75 ppm/°C		
Operation Temperature Range	-65 °C ~ +170 °C		
Resistance Tolerance	± 1%		
Maximum Working Voltage (V)	(P*R) ^{1/2}		

1. For detail information, please refer to the table on page 3 P/N list.

2. For resistors operated at terminal temperature over 100 °C, the maximum load shall be derated in accordance with the following curve.


Figure 1.: Power derating curve at terminal temperature

DOCUMENT: CYNPW-21Y-020 Page: 2 REVISION: A6

Recommended Solder Pad Dimensions

Resistance Range		Dimensions	
mΩ	X (mm)	Y (mm)	I (mm)
0.3 to 1	3.7	3.2	7.35

VSML	2512	S		_		
(1)	(2)	(3)	(4)		(5)	(6)

Note:

- (1) Series No.
- (2) Size
- (3) Terminal Type: S = Short terminal
- (4) Power Rating: 6 = 6W
- (5) Resistance Value: R001 = 0.001Ω , 0M50 = 0.0005Ω
- (6) Tolerance: $F = \pm 1\%$, $G = \pm 2\%$, $J = \pm 5\%$

P/N list:

P/N	R value	TCR	Power Rating	Tolerance		
P/IN	(mΩ)	(ppm/K)	(W)	1%	2%	5%
VSML2512S6-0M30*	0.3	±125	6	\checkmark		
VSML2512S6-0M50*	0.5	±100	6	\checkmark		
VSML2512S6-0M75*	0.75	±100	6	\checkmark		
VSML2512S6-0M80*	0.8	±100	6	\checkmark		
VSML2512S6-R001*	1.0	±75	6	✓		

* Note: Other values and tolerance would be available, please contact Cyntec.

Characteristics:

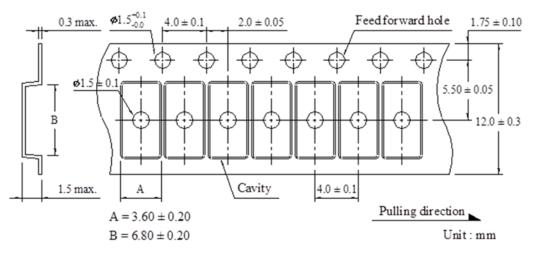
Electrical

Item	Specification and Requirement	Test Method
Temperature Coefficient (TCR)	As follow specification	JIS-C-5201 +25 °C / +125 °C.
Short Time Overload	 △R: ± 0.5% Without damage by flashover, spark, arcing, burning or breakdown 	JIS-C-5201-1 4.13 2.5 x rated power for 5 seconds.
Insulation Resistance	Over 100 M Ω on Overcoat layer face up	JIS-C-5201-1 4.6 100 V _{DC} for 60 +10/-0 seconds
Voltage Proof	$\triangle R: \pm 1\%$ Without damage by flashover, spark, arcing, burning or breakdown	JIS-C-5201-1 4.7 400 V _{AC} (rms.) for 60 +10/ -0 seconds

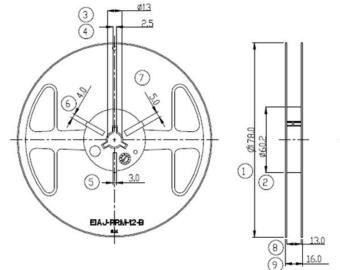
Mechanical

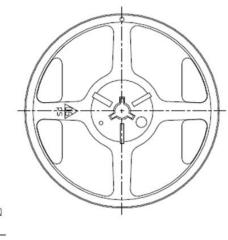
Item	Specification and Requirement	Test Method
Solderability	The surface of terminal immersed shall be minimum of 95% covered with a new coating of solder	J-STD-002 Method B category 3 245 ± 5 °C for 5 ± 0.5 seconds.
Resistance to Solder	△R: ± 0.5%	MIL-STD-202 Method 210
Heat	Without distinct damage in appearance	260 \pm 5 °C for 10 \pm 1 seconds.
Board Flex	$ riangle R:\pm 1.0\%$ Without mechanical damage such as break.	AEC-Q200-005 Bending value: 2 mm for 60 ± 1 seconds.
Vibration	\triangle R: ± 0.5% Without distinct damage in appearance	MIL-STD-202 Method 204 5G's for 20 minutes, 12 cycles each of 3 orientations. Test from 10- 2000 Hz.

Mechanical Shock	$\triangle R: \pm 0.5\%$ Without distinct damage in appearance	MIL-STD-202 Method 213 100G's peak value, 6ms, Half-sine waveform, 12.3 ft/sec.
Terminal Strength	riangle R: ± 1%	AEC-Q200-006
(SMD)	Without mechanical damage such as break.	Force of 1.8 Kg for 60 seconds.


Endurance

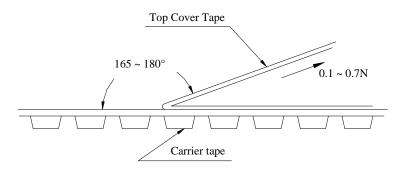
Item	Specification and Requirement	Test Method
Temperature Cycling	$\triangle R: \pm 0.5\%$ Without distinct damage in appearance	JESD22 Method JA-104 -55 °C to 150 °C /1000cycle 30 min maximum dwell time at each temperature on FR4(PCB).
Biased Humidity	$\triangle R: \pm 0.5\%$ Without distinct damage in appearance	MIL-STD-202 Method 103 1000 hours, 85 °C /85%R.H, applied for 10% rated power.
Operational Life	\triangle R: ± 1.0% Without distinct damage in appearance	MIL-STD-202 Method 108 70 °C, 100% rated power 1.5 hours ON, 0.5 hours Off For total 1000 hours
High Temperature Storage	$\triangle R: \pm 1.0\%$ Without distinct damage in appearance	MIL-STD-202 Method 108 170 °C for 1000 hours.
Moisture Resistance	$\triangle R: \pm 0.5\%$ Without distinct damage in appearance	MIL-STD-202 Method 106 65 °C /90-100%RH, unpowered, 7b not required


Note: Measurement at 24 ± 4 hours after test conclusion for all reliability tests-parts.



Dimensions:

Reel Dimensions:


Unit: mm

Symbol	1	2	3	4	5	6	7	8	9
Sizo	178.0	60.2	13.0	2.5	3.0	4.0	5.0	13.0	16.0
Size	±1	±0.5	±0.5	+0.5/-0	+0.5/-0	+0.5/-0	+0.5/-0	±0.5	±0.15

Peel Strength of Top Cover Tape:

The peel speed shall be about 300 mm/min and the peel force of top cover tape shall between 0.1 to 0.7 N

Number of Taping:

2,000 pieces / reel

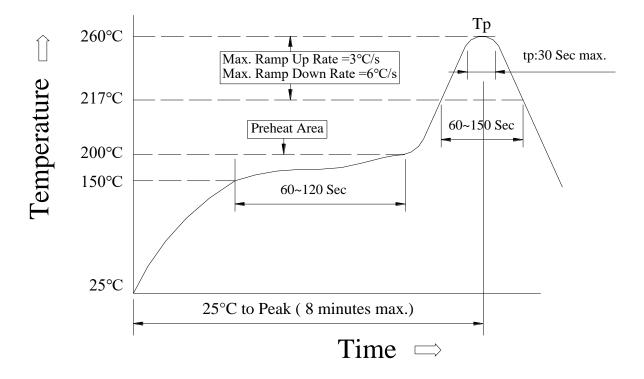
Label Marking:

The following items shall be marked on reel

- (1) Description
- (2) Quantity
- (3) Part No.
- (4) Tapping No.

Care Note:

Care note for storage


- Current sensor resistor shall be stored in a room where temperature and humidity must be controlled.
 (temperature from 5 to 35 °C; humidity < 60% RH. However, humidity should be kept as low as possible.)
- (2) Current sensor resistor shall be stored to prevent from direct sunshine.
- (3) Current sensor resistor shall be stored without moisture, dust and harmful gas (chloridation hydrogen, sulfurous acid, and sulfuration hydrogen), or the current sensor resistor will fail on solderability test.
- (4) Expiration date: One year after shipping date (product is required to return after expiration date)
- (5) Solderability should be confirmed in case of exceeding 12 months.

Care note for operating and handling

- (1) Protect the edge and coating of the sensors from mechanical stress.
- (2) Avoid bending of printing circuit board (PCB) when cutting and fixing it on support body to reduce mechanical stress on sensors.
- (3) Sensor should be used within the condition of specification.Note: if the voltage loaded on the sensor is higher than specified value, the current sensor resistor may fail due to temperature rise.
- (4) The loaded voltage should consider terminal temperature of the sensor according to the derating curve.
- (5) When applying a high current over suggested specification (pulse current, shock current) to the current sensor resistor, it is necessary to re-evaluate the operating condition before using it.

Suggested Reflow Profile

(1) <u>Reflow Soldering Method:</u>

Deflow Coldering	Tp: 255~260 °C	Max.30 seconds (Tp)
Reflow Soldering	217 °C	60~150 seconds
Pre-Heat	150 ~ 200 °C	60~120 seconds
Time (25 °C to peak temperature)	8 minutes max.	

Reference: JEDEC J-STD-020E